Calculate and apply the empirical transfer function (ETF). First append the expected values for the standards, then calculate the ETF per Preparation, then apply the ETF to all the samples and standards.
empirical_transfer_function(
.data,
...,
std_names = paste0("ETH-", 1:3),
std_values = c(0.2052, 0.2085, 0.6132),
raw = D47_raw,
exp = expected_D47,
session = Preparation,
id1 = `Identifier 1`,
etf = etf,
etf_coefs = etf_coefs,
slope = slope,
intercept = intercept,
out = D47_etf,
outlier = outlier,
quiet = NULL,
parallel = FALSE
)
A tibble resulting from collapse_cycles()
.
These dots are for future extensions and must be empty.
Names of the standards.
Expected values of the standards. Defaults to Bernasconi et al., 2021.
Column name of raw \(\Delta_{47}\) values.
Name of the new column that will hold expected values.
The column name to group analyses by. Defaults to
Preparation
.
Column name of Identifier 1
(default).
The column name of the new model.
The column name with the coefficients of the model.
The column name of the new slope.
The column name of the new intercept.
The new column name.
Column name of outlier
(default).
If TRUE
, print info messages. If NULL
(default) listens to options(clumpedr.quiet)
Whether or not (default) to process this in parallel, using package furrr
.
This function is a wrapper for append_expected_values()
,
calculate_etf()
, and apply_etf()
.
Other empirical transfer functions:
append_expected_values()
,
apply_etf()
,
calculate_etf()