Compute isotopic ratios for a sample with isotopic ratios R13 and R18, optionally accounting for non-zero values of \(\Delta^{17}\)O and clumped isotope anomalies (all expressed in permil). Function based on Daeron et al., 2016.
isobar_ratios(
.data,
...,
R13 = R13,
R18 = R18,
R45 = R45,
R46 = R46,
R47 = R47,
R48 = R48,
R49 = R49,
R17_PDBCO2 = default(R17_PDBCO2),
R18_PDBCO2 = default(R18_PDBCO2),
lambda = default(lambda),
D17O = default(D17O),
D47 = default(D47),
D48 = default(D48),
D49 = default(D49)
)
A tibble with columns R13 and R18.
These dots are for future extensions and must be empty.
The column name for R13.
The column name for R18.
The output column name for R45.
The output column name for R46.
The output column name for R47.
The output column name for R48.
The output column name for R49.
The R17 value of PDB (g). Defaults to 0.0003931, from Assonov and Brenninkmeijer 2003, re-scaled by Brand, 2010.
The R18 value of PDB (g). Defaults to 0.00208839, derrived from Baertschi, 1976, calculated by Brand 2010 eq. 2.
Isotopic fractionation of \(^{17}\)O. Defaults to 0.528, from Barkan and Luz, 2005.
The difference between the expected \(\delta^{17}\)O (\(\delta^{18}\)O\(-\lambda*\delta^{18}\)O) and the actual \(\delta^{17}\)O value.
TODO: look up
TODO: look up
TODO: look up
Daeron, M., Blamart, D., Peral, M., & Affek, H. P., Absolute isotopic abundance ratios and the accuracy of \(\Delta_{47}\) measurements, Chemical Geology 2016, 442, 83–96. doi:10.1016/j.chemgeo.2016.08.014